11x^2=x^2+9

Simple and best practice solution for 11x^2=x^2+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11x^2=x^2+9 equation:



11x^2=x^2+9
We move all terms to the left:
11x^2-(x^2+9)=0
We get rid of parentheses
11x^2-x^2-9=0
We add all the numbers together, and all the variables
10x^2-9=0
a = 10; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·10·(-9)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*10}=\frac{0-6\sqrt{10}}{20} =-\frac{6\sqrt{10}}{20} =-\frac{3\sqrt{10}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*10}=\frac{0+6\sqrt{10}}{20} =\frac{6\sqrt{10}}{20} =\frac{3\sqrt{10}}{10} $

See similar equations:

| (x-3)^0.5-1=x | | (15+12)=(19x-24) | | 4(x+3=20 | | p-6=-16 | | 2x-16+x-9=11 | | 1/4y-6=-17 | | 75=1/2h(15) | | (7x-49)=(9x-69) | | 2+4x=-10x-26 | | 3x+5.4=x-4.6 | | x2+3x+1=(x–2)2 | | 2x-7-(x-5)=10 | | 17=7x+2−4x | | -6(6-5n)+5n=-141 | | -4(-3+2p)=-2(6p-1) | | 3(7x+7)=156-6x | | 190+0.25m=345 | | (2x–1)(x–3)=(x+5)(x–1) | | 6x+4/2=8 | | 2(5x-7)(3x+1)=0 | | (10x+21)+13x=90 | | −12x+1=7x−14 | | 6−(3−c)=2 | | 3x=−9 | | 7x-(x-3)=3+6x | | 2(3x-5)(x-1)=0 | | -55/x=-6 | | 1.8+7n=9.5-4.5 | | 114+2x=2(7x-9) | | 2x2-26x+80=0 | | Y(4y+9)=0 | | -6x+1+5x=-1 |

Equations solver categories